
7 STEPS TO CREATING 

AN EFFECTIVE TEST AUTOMATION STRATEGY

1 CHOOSING WHAT TO AUTOMATE

Decide what you plan 

to achieve in short-time 
and long-time 
perspectives

Create test cases 
that match your 
business goals 

at the current stage

Consider 
what 

to automate 



Consider 

what 

not to automate

Highly-repetitiveMundane and doesn’t require creativity

A perfect test case to automate

With clear pass/fail results

Time-consuming if done manually Requires the checkup in multiple 
systems (browsers, OS, hardware, etc.)

Covers stable software components

Involves large data sets

2 DECIDING UPON A TEST APPROACH

Initiates the test design process 
at the early stages of SDLC

Testing starts after 

the coding is completed

Reactive
Proactive


Types of testing to automate

Regression 
testing

End-to-end 
testing

GUI 
testing


Smoke 
testing

Compatibility 
testing

API 
testing


Integration 
testing

Component 
testing

Unit 
testing

Types of Test Automation Frameworks


SoapUI


Katalon Studio


UFT One





Selenium


UFT One


LambdaTest

Selenium


Katalon Studio


TestComplete

Selenium


Robot Framework


LambdaTest


Selenium


UFT One


Testimony

UFT One


Ranorex


JMeter

Combine several different 
frameworks to bring together 
the best of each

Hybrid Framework


Record each step 

with validation parameters 
manually to play it back later

Record & Playback

Take scripts from record & 
playback, group similar ones,

call whenever needed

Structured Scripting


Create scripts for small 
components, test each, 
combine hierarchically 

into bigger scripts


Modular Framework

Store data in an external file 
and use it to read input 

or output parameters


Data-Driven Framework


Use words describing actions 
in consecutive order 

as commands


Keyword-Driven Framework

3 SELECTING AN AUTOMATION FRAMEWORK

Choose a framework that will allow creating scripts with higher re-usage, easier portability, and reduced maintenance cost

4 ASSIGNING DEDICATED RESOURES

Try not to make automation 
a part-time job of a manual 
QA engineer.



Instead, find a specialist 
with experience in scripting 
or at least relevant 
knowledge to be responsible 
for this scope of tasks.

5 SELECTING TESTING TOOLS

The technology 

software is built on


Requirements 

of the system under test


Programming 
languages you know

Open-source 

vs paid option


Development vs 
runtime license


Frequency 
of use

Complexity vs ease 
of use


Cross-platform testing 
support


Supported OS, platforms, 
environments, etc

 THINGS 

TO CONSIDER

STACK FEATURES

BUDGET

TECH TOOL

6 DESINING AND RUNNING TESTS

Outline day-to-day 
tasks and 
procedures

Create reusable 
test case 
templates

Create concise tests 
that are easy 

to understand

Make test scripts 
as minimal 

as possible

Break bulky tests 
into sequences 
before a checkup

Make sure tests 
aren’t dependent 
on the UI

Learn to prioritize 
test cases

7 KEEPING THE SCRIPTS IN ORDER

Arrange the tests 
according to their purpose 
or other criteria

Address requirements 

to check test case 
relevance & efficiency

Don’t forget 

to categorize 

new cases

Review 

and clear up 

existing cases


